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A Proofs and model derivation

A.1 Setup

This section provides additional details on the model presented in Section 3. The
basket of stocks 1 and 2 is called the index I, which by construction represents a value-
weighted index, and the basket of stocks 1, 2 and 3 is called the market M. The index
and market baskets therefore also pay dividend streams with dynamics as described in

(1), with the exception that their variance parameters have the form:

28182

m(l — pp)| b, (1)

Op; = 1-—

ODy — [1 — 2(8182 + S1S83 + 8283)<1 — pD)] O'2D, (2)

where s; is the weight of share of dividends of asset i:

" Dy+Dy+ Dy’

ie{1,2,3}. (3)

Si

Let w;; denote the market weight of stock ¢ at time ¢ such that Z?:l wit = 1 and let
wit = wit/(wit + woy) denote the weight of asset ¢ € {1,2} in the index. Then the

index return moments are

Ure = W{,tﬂl,t + Witlh,t, (4)
‘7%t = (w{,t)ZUit + (wit)zait + Qw{’twitcorr(le’t? dZ4)01,102,- (5)



A.2 Agents’ problem

Agent j’s optimization problem at time ¢ is to maximize her time additive utility:

Ujr=E; [/oo e 0= log cj,sds] (6)
¢

subject to her budget constraint. Formally, this gives:

fj,s

max U;, subject to E; l/ ¢ cjsds| < Wiy, (7)
0 gt

where ;; is the marginal utility of agent j at time ¢. The first order condition is:

ijj,s _ 6_6(s_t)0j_7j, (8)
&jit

where k; is the Lagrange multiplier on the budget constraint and §;, is a process given
by:
d&;ie

.= —rjdt — 0,,dZ,. (9)
J5

where 0, is the price of risk process for agent j. Note that the process can also be

written with respect to the dividend basis and the market basis! as:

e

Sr —ryedt = 0;,dZp = —rydt — 0},dZ,. (10)
-]7

The rationale for using two different bases, in addition to the initial Brownian motions
Z, is that each of the two new bases simplifies the derivation of the solution for a part
of the problem and involves independent Brownian motions, which are easier to deal

with. It is simpler to solve for optimal portfolios and market clearing under the market

'For a definition of the different bases, see Appendix B.



basis. However, the market basis transformation depends on stock return covariances,
so it is not appropriate to solve for equilibrium price dynamics. The dividend basis is
more useful for that purpose.

Since both agents trade in the bond, in equilibrium they should have the same
riskless rate (i.e. rzy = ra; = ry.) However their different investment opportunity
sets means they will face different market price of risk. Following the convex duality
methodology approach of Cvitani¢ and Karatzas (1992), I define a fictitious market
which the indexer views as complete. In the current setup with log ulity, the market
price of risk in the fictitious market is the same as in the incomplete market (see
Example 7.2 on p.304 Karatzas and Shreve (1998) for more details.) The idea is to
create a fictitious market for agent Z by replacing the expected return on asset ¢ by
i (1) = p; +1; such that in equilibrium she chooses not to hold the unavailable asset,

and to hold the index assets according to index weights. In the present setup,

W = argming [ (p(¥) = 7, pa($) — 7, () = )7 (1 () = 7, () — 7, i (00) — )|
(11)
Substituting the v obtained in (11) in the shadow market price of risk of the indexer

I obtain, under the market basis:

I I
o1Wy + P1202Wy

b7 = ¢ror' | \J1— phoawl | (12)

0

where ¢; = B is the Sharpe ratio of the index. Since (01wl +p1aoawd)?+(1/1 — p2yoawi)?

02, in scalar form 7 = ¢;. The result in (12) has the same form if working under the

1/2



dividend basis following (10):

I= I—
Wi011 + Wy021

L B B
01 = 0107 | Wity + wiza

I—= I—=
Wi1013 + W50 23

Agent A is unconstrained and faces complete markets, so her market price of risk under

the market and dividend bases are given by:

Opa=0c " —r, po—1, puz—r)

P1—p12¢2
Vi-ét ’

$3(1—p2,)—¢1(p13—p12p23)—92(p23—p12p13)

b1

21 (C23032 —

1
= c 11(021033 —
| 21 (Ta2031 —

where

¢ =013(022031 —

\/1_/)%2 \/1_p§2_p§3—p§3+2p12p13P23

A = 671(/'1/1 -7 Hdo—T, Uz — T)/

T22033) + T2(T12033 — T13032) + 3(013022 — T12093)

T23031) + T2(T13031 — 011033) + (£3011023 — T13091)

021032) + 22(G11032 — 012031) + 3(F12021 — 011022)

021032) + 012(021033 — 023031) + 011(023032 — 022033),

and z; = p; — r is the excess return on asset .



A.3 Optimal portfolios

Agent A is unconstrained, so her optimal portfolio proportions are given by

Under the market basis the covariance matrix is ¥; = 0,0}, so

™A =

1(1—p33)—d2(p12—p13p23) —d3(p13—p12p23)

TALt = E;l(,ut — 7’1)

P2(1—p23)—¢1(p12—p13p23)—P3(p23—p12p13)

o1(1—piy—p33—p2s+2p12p13P23)

¢3(1—p2,)—01(p13—p12p23) —P2(p23—p12p13)

o2(1—ply—p33—p33+2p12p13P23)

03(1-p1y—P13—P33+2012p13p23)

(17)

As for agent Z, I know from Cvitani¢ and Karatzas (1992) that 7wz, coincides with the

optimal portfolio in the incomplete market:

1

where Try = (pre — T)/U%,tv

(Ui

1,0
W

T = W%wé >

0

I I I
wy (mlwl REPIS )

o2(wh)2+2p1201 00wl wl+o2(wl)?

wé (aclw{—i-wzwé)

O‘% (w{)2+2p1201 azw{wé—‘rag (wg)2
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A.4 Proof of Proposition 1

The market clearing condition imposes that:

Wt = TAVAL T TT VTt

VA(903(p137p12923)0102+(x2(P12*p13p23)01+$1(*1+P§3)U2)03) (m14va)wi (z1wi +Taws)
(f1+P%2+P%3*2912p13p23+/)§3)UfUQUS oiwi+2p120102w1 w2+ o5w5
_ | va(za(=przp1a+pas)oroat(za(—1+p35 ) or+a1(p12—piapas)oa)o3) (—1+v4)wa (101 +T2w2)
(*1+P?2+P?3*2912P13p23+p§3)010303 N 02w?4+2p120100wiwe+osws ’
VA(:Bg(—1+p§2)0102+($2(—012/)13+p23)01+£61(p13—p12p23)02)03)
L (—H—p%ﬁ-p%g—2P12P13p23+P§3)01020§ ]

(20)

where x; = p; — r are excess returns. Solving for xq, x5 and 3, I get:

*
€Ty = (01 (0203w2w3 (,012P13U1W1 — P2301W1 + P1302W2 — p12p2302w2)
2 2 2 2
+vU (alwl —+ p1202w2) (alwl -+ 2,0120'10'2W1WQ -+ P130103W1W3 -+ O9W, —+ p230203w2w3)))

/ (I/A (afcuf + 2p120'10'2CU1WQ + ngg))

W30
= (w101 + wap1202) | 1 — 223 (W1p1301 + Wap230y
I
WosOo0
% [Wlal (P12pl3 - 023) - W2U2(,012,023 - p13)] . (21)
I



I can also write z7 in terms of z7}:

1
%
Ty = B {01 (0203w2w3 (P12P13U1w1 — P2301W1 + P1302wW2 — p12p2302w2)

vaotwi
+va (o1w1 + praoows) (T7wr))}

=5 [:ﬁ(alwl + 017202w2)

23 (wl[cov(Rl, Ry)cov(Ry, R3) — o2 cov(Ry, Rs3)]
VA wr
—%[cav(Rl, Ry)cov(Ray, R3) — chov(Rl, R3)]>:| . (22)
I

For z3, I get

x5 = (03 (I/Ap130?wi’ + o%w? (VA (2p12p13 + pa3) oowa + (1 + (—1+va) pfg) Ugwg)
2 2 2
ToywW; (VAP23<72¢U2 + (1 + (=1 +v4) :023> 03w3>
+o100w1ws (2p12 (Vapasoaws + o3ws) + p13 (Vaoaws + 2 (=1 4 v4) pasosws))))
/ (VA (waf + 2p120109w1we + agwg))

= wicov(Ry, Ra) + w0} | 1+ 2H(1= )] (23)

where

2,2 2, .2
= ojwi + 2p120102w1w2 + o5W5 + P130103W1W3 + P230203Wal3
7=
w1 + wo

= 07w; + wscov(Ry, Rs), (24)

with wy = wy + wo. Results for x5 are omitted as they are symmetric to ;.



A.5 Proof of Proposition 2

Following Cuoco and He (1994), I can still use a social planner to derive equilibrium
prices, but the weight A\; will be stochastic:
U, = Et/ e 00— (logcas + Aslogers) ds. (25)
t

The consumption sharing rule is given by:

R (26)

Cj,t
Dyt

I define Agent j’s equilibrium share of world consumption as v, = In equilibrium

the two agents must consume the aggregate dividend: ca; + ¢z = Dpy. Thus,

1 At
1% = .
1+ S I

(27)

Var =

As in Basak and Cuoco (1998), the equilibrium state-price density &; is given by the

state-price density of the unconstrained agent A:

& =8 = HAefét(VA,tDM,t)fl- (28)

To solve for equilibrium prices, I need to derive an expression \; and the related process

Vay. Sustituting c4 and ¢z from (8) in (26), I get:

\ Kabae/Ea0 (29)
t —_— T T .

/‘izfz,t/ &1,0
Solving (10), agent j’s state-price density under the dividend basis, gives:



where 6, ; = ?;751 and 1 is a vector of ones. Substituting (30) in (29) gives:

t t, = - —
>\t — @67 0 %(6?4,579%,5)(187[0 (Q-A’Sigl-vs)/dZDvS.

K1
Applying [t6’s Lemma gives:

dX\

Tt = /.L,\’tdt + El)\ytdZD’t,

where

Hxe = glm(gz,t - g.A,t)a

Oxt = (gI,t - gA,t)-

Rewriting as a scalar process, I get:

d\
/Tt = iy dt + oxdZy 4,
t

where

Ox\t = \/(gz,t - gAJ)’(th - g.A,t)v

—1— 7
dZ)\7t - o-,\7t0-)\’tdZD,t’

Remember that:

wi T
i Tr_y I —1
0r = 3 wé ) Oa=70 To
o1
0 XT3

(31)

(32)

(35)

(36)

(37)



Therefore,

W{ I
§I—§A:£§5/ wi —o ! o |
or
0 T3
wi T
G0 —04) = 1%2 wh | = | 2
or
0 T3
%[mzwé(wﬁf + Wi P120102) — T1wy (W05 + Wi P120102)]
= | @

[

~N|

xIBI,S — I3

where 15 = pr303/01 = (W] prsoios+wl pasoaos) /2. One can easily see that 6,07 = Z

‘Nl\)

and that 6,04 = =

~1

U = 9;:(@1 - gA) =0.

Similarly,

LL'I —/
=——=4+90 HA
o7 T A0
a7
= 0)\ = [$1 To $3]Z_1[I1 To .173], — ?
I

Using the definition of v4 in (27) and applying It6 Lemma gives:

dva = pu,dt + 7, dZp,

10

[xlw{(wéag + W{p120'10'2> — LCQCU{(M{O'% + wéplzalag)]

. Note that those results are basis invariant. I obtain:

(38)

~ 1o

~N)



where

_ 2 2
Huy = VAVTO ),

Oy, = VAVIO ).

In scalar notation this becomes:

dvy = ILLVAdt + UVAdZ,\,

Oy

A = —VAVIO).

Applying 1t6’s Lemma to (28), I obtain:

df PvaDyOv 0D
R 5 2 ALM T VA M dt
é- |: + IuDJ\J O_DIM + V_A
[ —
— |7 A dZp.
[ Dy + V4 D
Equaling the terms to those in (10), I get:
PvaDyOvyOD
re=24 _ 2 AUM VA M
f + ILLD]\J UD]V[ + V_A )
— 0,
0 =0op,, +—2.
Dyt
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A.6 Proof of Corollary 1

From (28) I can assert that § = 4. Thus, from (34), (45) and (50),

[
Va

5,4 = 0Dy, =+

= 0D, — V10

= 0p,, — vr(fz — 04), (51)

=g="T0w "5 (52)
va Va

HZJDM—FZ(ODM—QI). (53)

Note here that 7p,, is exogenous to the model (when defined relative to the dividend
basis), vr and v4 = 1 — v7 are state variables and the other quantities are determined
endogenously in equilibrium. Denoting 6" = op,, the price of risk when there are no

indexers (v4 = 1, vz = 0),

=7+ 5 (7 ~0r)
= (7= 0a) =" (7" ). (54)

A.7 Proof of Proposition 3

In this section I derive the dynamics of each stock’s price process. The price .S; ; of stock
1 at time ¢ is the expected value of future dividends discounted using the stochastic

discount factor of the representative agent ¢ defined in (48):

- ZDi,TdTl . (55)

t

Sit = Ey [
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Using the results from equations (8) and (28), I have

-1
/ o —0(r—t) (CAT> DMdT] ' (56)
t CAt

Sz‘,t =k

From (27), I have:

G = 1D+M§t’ (57)
thus
CAt _ Dy 14 )\T' 59
car  Dur1+M
Substituting this last result in (56), I obtain:
Sie = Dare B Utm e_é(T_t)msi,Tdr
= Daeie (59)

where

1 0 A % A
= E, [/ eé(Tt)swdT} + +t E, [/ e";(T’t)—si,TdT (60)
t t

1+ N 1+ X Y
—— ——
VALt fﬁ VTt f'It
= vaufi +vradie (61)

Note that in a world without constraints, A; is constant and we thus have f;; = f;f}.

Alternatively, I can get this result by setting v4, = 1 and vz, = 0.
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A.8 Solving for f;ﬁ

f;f} depends on the relative share of the aggregate dividend of each stock, s;,; as defined

in (3). Therefore,
_ Dy
Dy

Sit

(62)

To fully characterize the relative weights of each dividend stream two of those s; are

sufficient, so I need two state variables. Using [t6’s Lemma, I obtain:

dsM ST _
SW = {OJDM (UDM - O-Di)} dt

+ (@p, —Tp,,)'dZp,
which after simplification yields
ds; = ps,dt + 7, dZp,
where

2 2
Hs; = SiS—; [—Sz‘UD +s_i0p_, +(si —5-4)pp,p_,0D0D_, |,

Os; = Sis*i(ﬁDi - 61)71‘)?

and D_; represents the dividend stream of the other two stocks combined.

Sit

it follows from Itd’s Lemma that:

Defining z; ; = log

s_i,t’

dw; = pig,dt + 7, dZp

14

(63)

(64)



where

1 1
Hz; = {MDz - QO’QDJ - {MDZ - QO-QD—i] ) (68)
Ty, =0p, —Op_, (69)
In scalar form,
dx; = pg,dt + 0,,dZ,,, (70)

where

Ox; = \/(EDi - ED—i)/EDi —0p_;

= \Job, + 0} —2pp.p_0D,0D_., (71)

=1 g7
T; — . ) D-
Z 0, 0, dZ (72)

From Cochrane, Longstaff, and Santa-Clara (2008), I know there is a closed-form
expression for fﬁ if z; is the only relevant state variable (v4 is irrelevant for ;ﬁ). In
the present case the moments of the dividend process of portfolio —i also depend on
the relative dividend of the two stocks in that portfolio, i.e. x; depends on Dy/D3. So
f{"} depends on two state variables representing the relative dividend processes. Let’s
use x7 and zo as the state variables. Note also that since Z?Zl ,:}5 = %, we only need

to solve for two ¢ to get the third one. We'll solve for ¢ = 1,2 so the functions will be

symmetric. Here I show the derivation of fﬁ Note from (64) that s; = 0 and s; =1

15



are absorbing states, so we obtain the following boundary conditions:

. A
:mlirgoo fl:t =0, (73)
lim fi = ! (74)
r1—00 57
. A
Al fie =0 (75)

The boundary condition lim,,, flAt is less obvious because in that case asset 2 be-
comes irrelevant, so fl“‘jt converges to the Cochrane, Longstaff, and Santa-Clara (2008)

case. From the Feynman-Kac theorem, we can transform the problem to a PDE rep-

resentation:
(76)
where
Sy — S189 — S5 )
My = — l(l_sl)Q] (1 —pp)op,
e
R e [
N e L
& 7, = (1 + 5 (—3(—; 2_3;)1)—(133_2 :—2)23152 + 23%)] (1 pp)o?,
Following Bhamra (2007), I use a perturbation expansion of the form:
= foteffi+efis+.. (77)
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Defining pp = 1 — 262, T get:

1
A _
o= §+ e 21§’
fffllzoa
A = e (1 —e™ (=1+51)%+ 87 +25 (—1+82) +2(—1+s3)82) 05
b (1+em)® (=1 + s,) 262 ’

After simplification, I obtain:

1-3 252 — 2 2 252) (—1 2

A.9 Solving for ZIt

Remember that

o) )\7_
fzIt = Et / eié(Tit)isi,TdT ) (79)
’ t )‘t

which depends on @14, 72, and v = ﬁ Note that A is a local martingale and that
assuming o, is bounded, then it is an exponential martingale. I can then define a new

measure:2

P/(Ar) = B, [1a,\r], Vt, Tel0,00) t<T. (80)

With this change of measure,

fft = Efw [/ e"s(T’t)si’TdT ) (81)

2See pages 28-29 of Karatzas and Shreve (1998) for details.
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From (81), it follows that f7, satisfies a BSDE. The coefficients of the BSDE will
depend on 1/{7‘}5, which satisfies a FSDE. Together they form a FBSDE. The Feynman-

Kac theorem still applies thus flIt satisfies the following inhomogeneous elliptic PDE:

PO | OfE O 1L B L, B L, O
1 0wy 2 Qg "Adua 27" Oxd 2 " 0z 2 YA OV
+5/ 5 82][‘% —! — 62-}(‘]:_[ — — an]:.[ _pf1+ 1 — 0 <82)
T2 0210 YA 9100 4 T2V 900U 4 L 14 e ’
where
,ulapc); = fg, + 6;16)\7
K = oy 457
P’ =
EL = o+ 7
- _Vi(l - V_A)O'i,
0 Ouy = —VaA(l —va)T, 0,
T Ous = —VA(L — V)T, 0,
S S
T O =T, 0x — <1 = >a’DQm —~ (1 -3 = >U’D3a>\,
— 51 — 51
) — ) S1 ) S1 )
04,00 = Op,0x — (1_S2> 0p,0x — (1 — 1= 32> TpyOA-

Note that o7, also depends on o3 and that o) (and 03) depends on the endogenously

determined .
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A.9.1 Boundary conditions

The required boundary conditions are the following:

lim ff, =0, (83)
Tr1——00 ’
P |
Jim fl= 5 (84)
th flIt =0, (85)
To—00 ’
lim vz ff, =0, (86)
VA ’
a T
fis = 0. (87)
8VA A=0

Finally, when x5 — —oo, then the second dividend tree becomes irrelevant and fft
converges to the case of Bhamra (2007). The other boundary conditions are justified

as follows:

L limg, o ff, = 0 and limg, o ff, = 0: When x5 — oo, I must be that z; —
—00. When z; — —o0, the first dividend stream becomes irrelevant so investors

aren’t willing to pay anything to own the stock.

2. limg, 500 f%t = %: In this case there is a single dividend tree and complete markets

(the constraint becomes irrelevant), so:

S === = DM(VA,tfft + VI,tfi[,t)7

1
= 5 = VA (6) + (1 — VA,t)fII,t = fll,t'

3. lim,, 1 vz fft = 0: When v4 = 1, agent A, which faces no constraint, consumes

all dividends so markets are complete. Therefore fl,t‘ L= f#A so this boundary
VA= ’

19



condition must hold.

afft
vy
v =0

a worst investment opportunity set than active investors, so this can’t hold for

= 0: As vq — 0, indexers consume all dividends. However, they have

more than an instant. Therefore this boundary condition must be a reflecting

boundary condition.

A.10 Matching moments

I now have expressions for both ;f} and fZIt I have a closed form expression for ;i that
depends on exogenous parameters and state variables, which is easy to evaluate nu-
merically. For fft, I have a PDE that can be approximated. However, the current form
of that solution depends on the endogenously determined & because of the dependence

on 0. I have that S;; = Dy fis, so:

dSi _ dfi  dDy _dfi Dy
Si fi Dy fi Du’

where
dD

20



and Gp = $10p, + $20p, + (1 — 51 — $2)Tp,. I know that f;, is a function of exogenous

parameters and state processes s, sy and vy, therefore from It6’s Lemma I get:

+o

dfi df; df; 1( 2 O fi g

D fi i
di: v s s ~ 2 . 2 -
I [M A0v4 tha ' 051 T 2059 + 2\ "oy 1 0s? 2 052

D f; P f; O f;
26, Ty = + 20, Tgy = + 20, Toy—— | | dt
1200, Ov 405, 20,0 2 0v 4059 +205,0 2051059

_of,  _ ofi  _ 0f] -
+ [UZ,AM—FUSlaSlJrUSQaSJ dZ. (89)

From the definition of stock return process, I also have that:

(2

dSz Di —! j7
== [ui _ s} dt +7dZ, (90)

where

2 a2f1

2 )s3

2 82fl

+o0o

+o0o

L[ 0f, 0fi 0k (. &
ILL'L - fz :U“I/A (9VA ,u81 851 :uSQ (952 2 VA ayi S1 85%
d*fi 9 fi 9 fi
7517 27:/ 7527 27/5 7527
o OV 4081 t 0,0 OV 085 2050 051085

+< Ofi 45 0f afi) UD]+/LD, (91)

PRy JRCLANY, Sl
A aVA = 851 52 882

_1[ ofi _ Ofi  _ 0fi

N EE e
(2

—
+20,,

] +7p. (92)

Note that the expression I have for &, from (34) is a function of both & and the
equilibrium price ratio f,/fs, since wl = 1+ fi/fo and wl = 1+ fo/f1. 1 first use
the definitions of @ and @) to create perturbation expansions of these moments as a
function of fi, fo, f3 and their own expansions. Substituting these expansions in the

PDE (82), I create a perturbation expansion of the PDE, and then solve by equating

21



terms in the different powers of €. The result is the closed-form approximation

flI:flA‘l’2 —1+81+32)(—SQ+2(S%+81(—1—|—52)—{—33)>

(31 i 82) I/A52 S1 (2 (
+ (51 + s2) (1 + 287 +2(=1+82) 82+ 51 (=3 + 252)) V_A) (1 — pp) o5 + O(eh).

(93)

As in the unconstrained economy, I find ff by symmetry and f5! by f = % — ff—f£.
A drawback of the use of a perturbation expansion is that it is impossible to guarantee
that the boundary conditions will be satisfied. It is easy to see that in this case
(87) is not satisfied, which means that the approximation will not be valid in the
neighbourhood of v4 = 0. Since this region is not economically important for the
current analysis,® this does not pose a problem as long as the analysis focuses on

values of v4 that are away from that boundary.

B Vector notation

This section introduces the two different vector bases I use in the proofs. While not
a necessary read, this section is a useful appendix for understanding the proofs. The
reason for using different bases is to simplify certain steps of the proof. Steps involv-
ing stock returns are easier to solve under the market basis. However, when solving

for equilibrium stock return dynamics, the dividend basis is more appropriate. The

3v4 = 0 corresponds to the case where the aggregate wealth is fully owned by the indexer, and
the remaining active investor still has to hold the share of the non-index stock. The realization of

such a scenario seems highly unlikely.
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dividend processes in (1) can be represented as a vector:

dD
ﬁ: :,LLD]_dt—FO'D]_/dZDt, (94)

: 1. dD; , . :
where dD—Iit is a vector with 5=* as the ¢-th element and dZp, is a vector with dZp,, as
i, ’

the i-th element. Since the dZp,, can be correlated, we can represent the correlation

matrix of dZp, as

1 pp pp

Co.=1|pp 1 pp

o pp 1

Stock returns in (4) can also be represented in vector notation:

th = ,utdt + O'tdZt,

where dR;, pp and dZ; are vectors with dR;;, i, and dZ;; as the i-th element and o
is a diagonal matrix with o;; as the ¢-th diagonal element. The dZ; BM are correlated

with correlation matrix:

1 priz peas
Ci = peaz 1 pros
| Ptz Pr2s 1 ]

B.1 Rotation matrix

It is often easier to deal with independent Brownian motions (BM) than correlated
ones. It is possible to transform a multivariate BM to a vector of independent BM
using a rotation matrix. Under that transformation, drifts, variances and covariances

of 1to6 processes are invariant. Consider the three-dimensional multivariate BM Z =

23



[Z1 Zy Zs]' with correlation matrix:

1 pi2 pis

¢ = piz2 1 pas

P13 p23 1

Using the Cholesky decomposition, we can construct a rotation matrix K to transform
Z into a three-dimensional vector of independent BM. From the Cholesky decomposi-
tion, we get the lower triangular matrix L such that LL’ = C. The matrix L is often
used to generate correlated BM from independent ones such that Z = LX. In this

case, I am interested in the inverse process: X = KZ where K = L.
Applying the Cholesky decomposition to the matrix C,

K =
1 0 0
_ P12 1 0
V 1-p3, V 1-p3,
P13 —pP12p23 —P12p131 P23 1
V (1=02,) (1=p2,—p35+2p12p13p23—p35) ) (1=02) (1=p35— 025 +2012013023—035) \/1+ ”f3*2”121i13;23+f)§3
BEREET)

(95)

Changing the set of BMs using a rotation matrix is called a change of basis. Drift
terms, total variances and covariances between processes are invariant under a change
of basis. Note that if the initial BM are uncorrelated (correlation terms in C' all equal

to 0), then the rotation matrices L and K collapse to the identity matrix.

B.2 Dividend basis

The BM driving the dividend processes described in (94) are correlated. Consider Lp,,

the lower triangular matrix from the Cholesky decomposition of Cp,, and it’s inverse
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Kp,. Then I can rewrite (94) as

dD
—t — ppdt + opdZp,
Dy
= ,UDdt + UDLDZDt
= ppdt +opZp,,

where op = opLp and ZDt = KpZp,. This transformation yields a new basis that I
call the dividend basis. The variance matrix under the dividend basis can be written

as:
1 0 0

ap=| pp \J1-ph 0 : (96)

pp YR \[3—20p -

2
1+pp
B.3 Market basis

Similarly, the BM driving the market return processes in (4) might be correlated as
they are determined endogenously. Consider L;, the lower triangular matrix from the

Cholesky decomposition of C;, and it’s inverse K;. Then I can write:

th = /Jtdt + UtdZt
= pdt + oy LydZ,
= wdt + 0,dZ,

where 0, = 0,L; and Z, = K;Z;. This transformation yields a new basis that I call the

market basis. Under this basis,

01 0 0
g p1202 /1 — 01202 . (97)
—2 +
01303 012p13+p23 \/1 Pis Plii13p23 P33 o
12

Note that the return process can also be written under the dividend basis as:

th = utdt + Etd7Dt7
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where 7,dZ p, = 0:dZ; = 0,dZ,. ; has the generic form:

011 012 013
Or= | 021 022 023 |- (98)

031 032 033

However, this leaves 9 unknowns to solve for in ; (it is a 3 X 3 matrix), whereas the
known structure of g, leaves only 6 unknowns to solve for, namely oy, 09, 03, p12, p13

and P23
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